

Low & Medium Pressure filters

LFEX series

Maximum working pressure up to 1.6 MPa (16 bar) - Flow rate up to 300 l/min

Lighter, easier to use, and kinder to the environment - MP Filtri's new ELIXIR low pressure concept filters have been specially designed for in-line connections and to handle working pressures up to 1.6 MPa (16 bar).

The concept is now available in three new series:

- SFEX SERIES Suction
- RFEX SERIES Return
- LFEX SERIES Delivery, which is equipped with differential indicator (electrical or visual)

Available in 4 sizes: 060, 080, 110, and 160, the new generation of filters is completely interchangeable with the previous MPS 050/070/100/150 series of the Spin-on range.

The new cast aluminium head and nylon design reduces weight by 10 per cent compared to the Spin-on range.

Less waste reduces both your carbon footprint and protects the environment. Replacement is fast and easy, just disassemble the bowl with a 32mm fixed wrench , take out the FEX filter element and replace.

Improved connection system (between the head and the filter element and between the head and the bowl) reduces leakage so the dirt to the output circuit is reduced.

LFEX Series

New smaller differential indicator - electrical or visual.

High flow rate thanks to the head geometry: the oil enters in the filter element in a spiral flow and spreads more effectively inside the filter element for greater longevity.

THE CORRECT FILTER SIZING HAVE TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING BY THE APPLICATION.

THE MAXIMUM TOTAL PRESSURE DROP ALLOWED BY A NEW AND CLEAN RETURN FILTER HAVE TO BE IN THE RANGE 0.4 \div 0.6 bar.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop Δpc of the housing is proportional to the fluid density (kg/dm³); all the graphs in the catalogue are referred to mineral oil with density of 0.86 kg/dm³.

The filter element pressure drop Δpe is proportional to its viscosity (mm²/s); the corrective factor Y have to be used in case of an oil viscosity different than 30 mm²/s (cSt).

Sizing data for single filter element

 Δpc = Filter housing pressure drop [bar]

Δpe = Filter element pressure drop [bar]

 $\mathbf{Y}=$ Corrective factor Y (see corresponding table), depending on the filter type, on the filter element size, on the filter element length and on the filter media

 $\mathbf{Q} = \text{flow rate (I/min)}$

V1 reference oil viscosity = 30 mm²/s (cSt)

V2 = operating oil viscosity in mm²/s (cSt)

Filter element pressure drop calculation with an oil viscosity different than 30 mm²/s (cSt)

 $\Delta pe = Y : 1000 \times Q \times (V2:V1)$ $\Delta p \text{ Tot.} = \Delta pc + \Delta pe$

Verification formula

 Δp Tot. $\leq \Delta p$ max allowed

Maximum total pressure drop (Δp max) allowed by a new and clean filter

Application	Range (bar)
Suction filters	$0.08 \div 0.10$
Return filters	$0.4 \div 0.6$
	0.4 ÷ 0.6 return lines
	0.3 ÷ 0.5 lubrication lines
Low & Medium Pressure filters	$0.3 \div 0.4$ off-line in power systems
	$0.1 \div 0.3$ off-line in test benches
	0.4 ÷ 0.6 over-boost
High Pressure filters	0.8 ÷ 1.5
Stainless Steel filters	0.8 ÷ 1.5

Generic filter calculation example

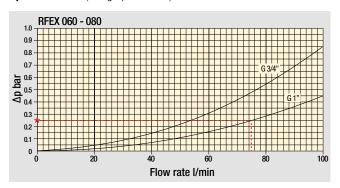
Application data:

Return filter

Pressure Pmax = 10 bar

Flow rate Q = 75 I/min

Viscosity V2 = 46 mm²/s (cSt)


Oil density = 0.86 kg/dm³

Required filtration efficiency = $25 \mu m$ with absolute filtration

1" inlet connection

Calculation:

Δpc = 0.25 bar (see graphic below)

Filter housings Δp pressure drop.

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

 $\Delta pe = (2.56 : 1000) \times 75 \times (46 : 30) = 0.29 \text{ bar}$

SFEX - RFEX - LFEX corrective factor

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media.

Reference oil viscosity 30 mm²/s

Filter element	Absolute filtration N Series						No		filtrat i eries	ion	
Туре	A03	A06	A10	A16	A25	P10	P25	M25	M60	M90	M250
FEX060	11.63	10.79	5.10	4.78	4.26	4.58	3.22	1.02	0.89	0.63	0.63
FEX080	6.83	6.69	3.35	3.19	2.56	1.97	1.38	0.62	0.45	0.29	0.29
FEX110	5.73	5.22	2.52	2.16	1.66	1.33	1.12	0.22	0.18	0.14	0.14
FEX160	3.72	3.59	1,79	1.76	1.22	0.90	0.76	0.15	0.10	0.09	0.09

..... Highlighted Y values related to RFEX return filters

$\Delta p \text{ Tot.} = 0.25 + 0.29 = 0.54 \text{ bar}$

The selection is correct because the total pressure drop value is inside the admissible range for return filters.

In case the allowed max total pressure drop is not verified, it is necessary to repeat the calculation changing the filter length/size.

Description Technical data

Low & Medium Pressure filters

Maximum working pressure up to 1.6 MPa (16 bar) Flow rate up to 300 l/min

LFEX is a range of low pressure filter for protection of sensitive components in low pressure hydraulic systems.

They are also suitable for the off-line filtration of small reservoirs. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/4" and SAE connections up to 1 5/8", for a maximum flow rate of 300 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid
- Bypass valve, to relieve excessive pressure drop across the filter media
- NEW Visual and electrical differential clogging indicators, capable to hold the overall dimension
- MYclean interface connection for the filter element, to protect the product against non-original spare parts
- External protective wrap, to optimize the flow through the element and to save the element efficiency against non-proper handling

Common applications:

Delivery lines, in any low pressure industrial equipment or mobile machines

Filter housing materials

- Head: Aluminium
- Bypass valve: Nylon Steel
- Bowl: Nylon

Bypass valve

Opening pressure 350 kPa (3.5 bar) ±10%

Δp element type

- Microfibre filter elements series N: 8 bar
- Fluid flow through the filter element from OUT to IN

Seals

Standard NBR series A

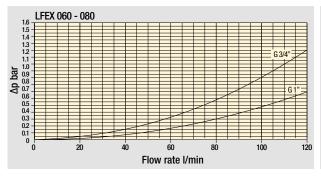
Temperature

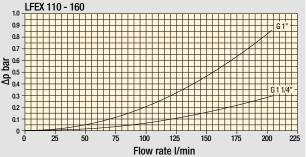
From -25 °C to +110 °C

Note

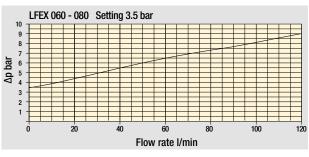
LFEX filters are provided for vertical mounting

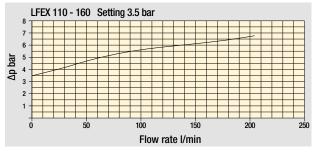
Weights [kg] and volumes [dm3]


Filter series	Weights [kg]	Volumes [dm³]
LFEX 060	0.50	0.60
LFEX 080	0.95	0.80
LFEX 110	1.20	1.60
I FFX 160	1.70	2.00


Hydraulic symbols

,		
Filter series	Style S	Style B
LFEX 060	•	•
LFEX 080	•	•
LFEX 110	•	•
LFEX 160	•	•
	D.I. IN	D.I.


LFEX


Pressure drop

Filter housings Δp pressure drop

Bypass valve pressure drop

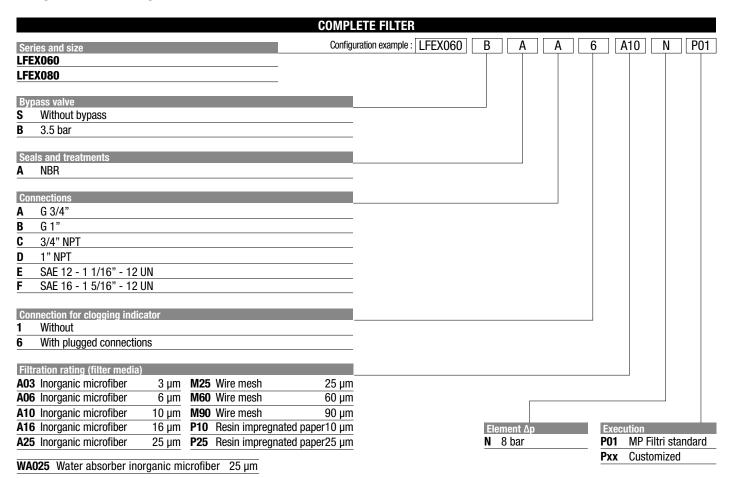
The curves are plotted using mineral oil with density of 0.86 kg/dm 3 in compliance with ISO 3968. Δp varies proportionally with density.

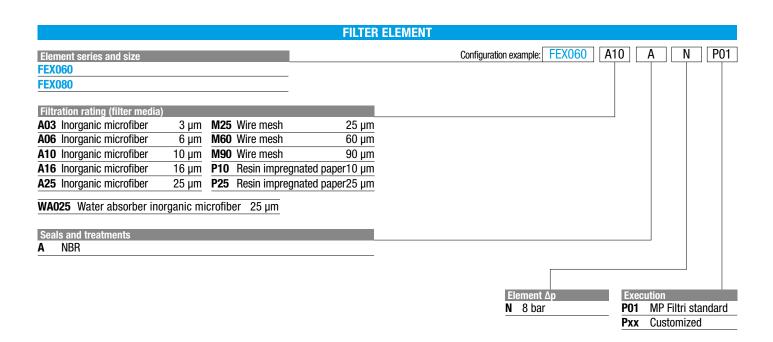
Flow rates [I/min]

Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 060	45	47	65	66	68	84	84	86	67	73	
LFEX 080	58	59	73	72	76	86	87	88	79	82	
Connections of filter under	er test G 3/4".										
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 060	49	51	75	77	80	104	105	107	74	95	
LFEX 080	67	67	86	87	92	107	108	110	96	112	
Connections of filter under	er test G 1".										
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 110	107	115	182	195	216	295	298	300	232	242	
LFEX 160	146	150	210	212	237	300	303	304	254	262	
0 11 ((11)											

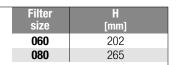
Filter element design - N Series

Connections of filter under test G 1 1/4".

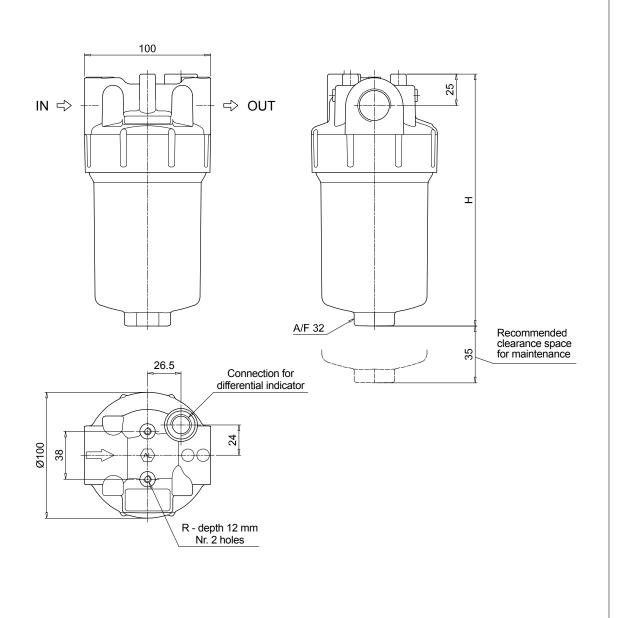

Maximum flow rate for a complete delivery filter with a pressure drop $\Delta p = 0.7$ bar.

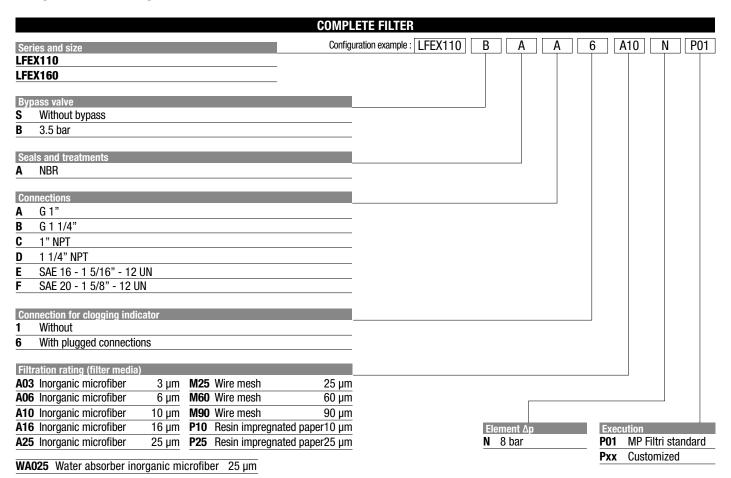

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

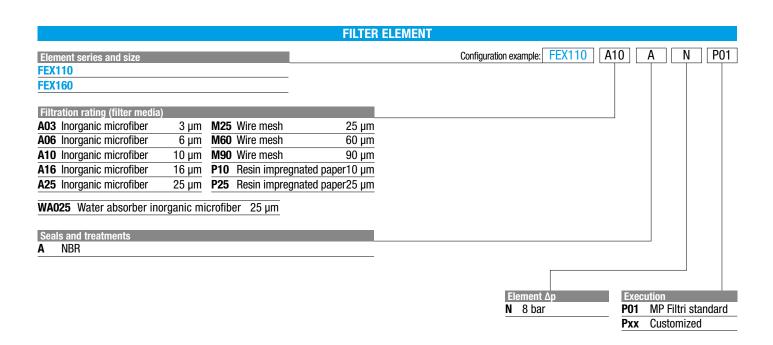
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


 $\label{lem:please} \mbox{Please, contact our Sales Department for further additional information.}$

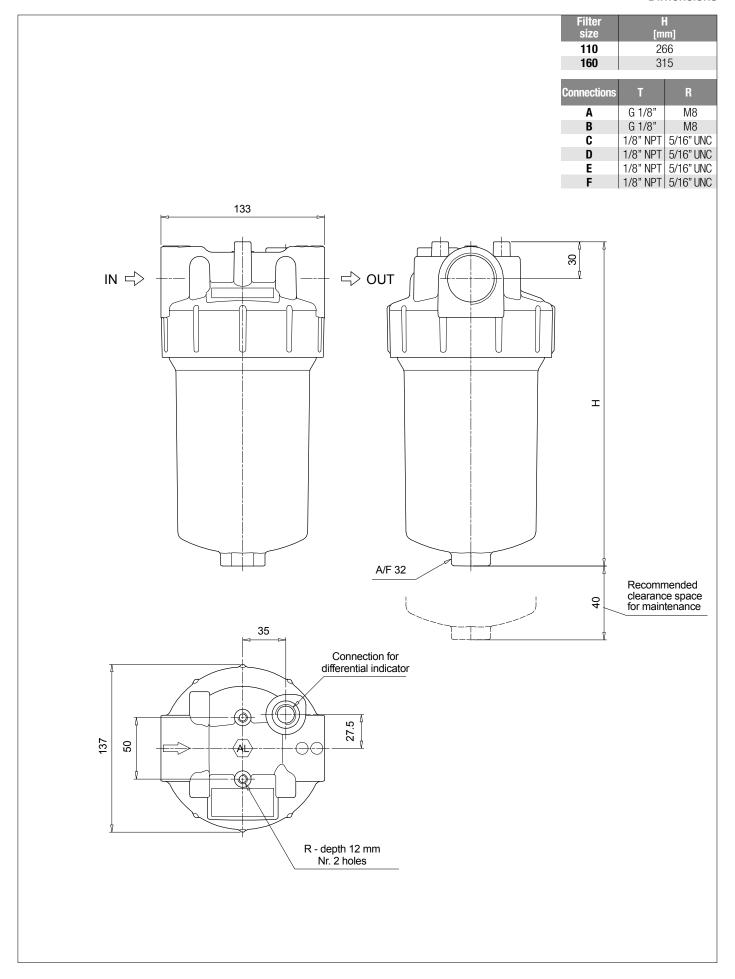
Designation & Ordering code




	ACCESSORIES
Differential indicators	page
DES Electrical differential indicator	36
DVS Visual differential indicator	37



Connections	Т	R		
Α	G 1/8"	M6		
В	G 1/8"	M6		
C	1/8" NPT	1/4" UNC		
D	1/8" NPT	1/4" UNC		
E	1/8" NPT	1/4" UNC		
F	1/8" NPT	1/4" UNC		



Designation & Ordering code

	ACCESSORIES
Differential indicators	page
DES Electrical differential indicator	36
DVS Visual differential indicator	37

Electrical Differential Indicator Settings Ordering code 2.5 bar ±10% DE S 25 H A 10 P01 4.0 bar ±10% DE S 40 H A 10 P01 A/F 19 Max tightening torque: 20 N·m

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass
- Internal parts: Brass - Nylon
- Contacts: Silver
- Seal: HNBR

Technical data

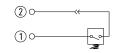
Max working pressure: 16 barProof pressure: 24 barBurst pressure: 48 bar

Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943
 Degree protection: IP67 according to EN 60529

Electrical data

- Electrical connection: AMP Superseal series 1.5

- Resistive load: 0.2 A / 24 Vdc


- Switching type: Normally open contacts (NC on request)

Electrical Differential Indicator Settings Ordering code 2.5 bar ±10% DE S 25 H A 30 P01 4.0 bar ±10% DE S 40 H A 30 P01 A/F 19 Max tightening torque: 20 N·m

Hydraulic symbol

Electrical symbol

Materials

Body: Brass
Internal parts: Brass - Nylon
Contacts: Silver
Seal: HNBR

Technical data

- Max working pressure: 16 bar- Proof pressure: 24 bar- Burst pressure: 48 bar

Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943

- Degree protection: IP67 according to EN 60529

Electrical data

- Electrical connection: Deutsch DT-04-2-P - Resistive load: Deutsch DT-04-2-P 0.2 A / 24 Vdc

- Switching type: Normally open contacts (NC on request)

DES*80				
Electrical Differ	rential Indicator			
Settings	Ordering code			
2.5 bar ±10%	DE S 25 H A 80 P01			
4.0 bar ±10%	DE S 40 H A 80 P01			
	A/F 19 Max tightening torque: 20 N·m			

Hydraulic symbol

Electrical symbol

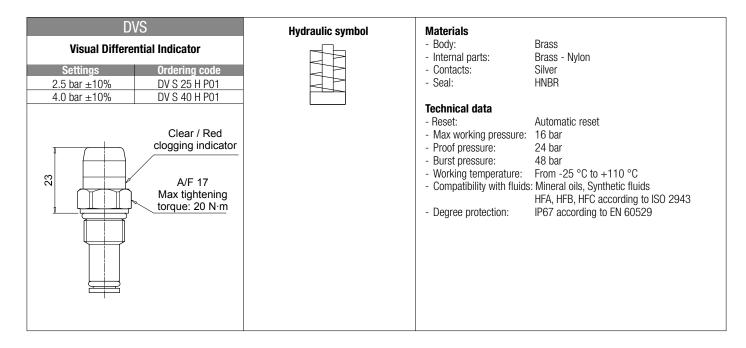
Materials

- Body: Brass
- Internal parts: Brass - Nylon
- Contacts: Silver
- Seal: HNBR

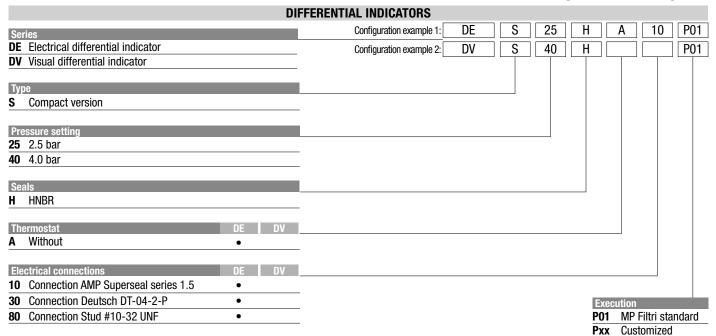
Technical data

Max working pressure: 16 barProof pressure: 24 barBurst pressure: 48 bar

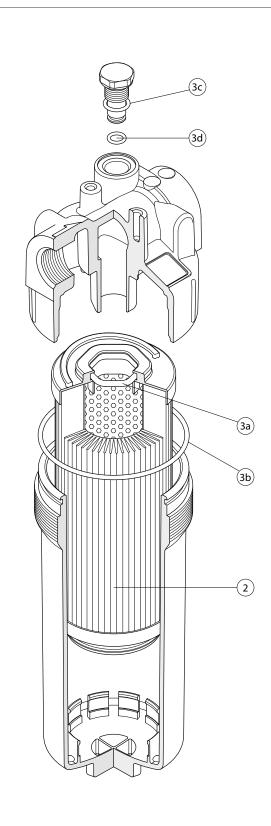
 Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943


- Degree protection: IP67 according to EN 60529

Electrical data


Electrical connection: Stud #10-32 UNFResistive load: 0.2 A / 24 Vdc

- Switching type: Normally open contacts (NC on request)



Designation & Ordering code

Order number for spare parts

Item:	Q.ty: 1 pc.	Q.ty: 1 pc. (3) (3a ÷ 3d)	Q.ty: 1 pc.
Filter series	Filter element	Seal Kit code number NBR	Indicator connection plug NBR
LFEX 060-080	See order table	02050771	T3H
LFEX 110-160	table	02050772	1311